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Abstract— It is widely accepted that in the future, robots will
cooperate with humans in everyday tasks. Robots interacting
with humans will require social awareness when performing
their tasks which will require navigation. While navigating,
robots should aim to avoid distressing people in order to
maximize their chance of social acceptance. For instance,
avoiding getting too close to people or disrupting interactions.
Most research approaches these problems by planning socially
accepted paths, however, in everyday situations, there are many
examples where a simple path planner cannot solve all of the
predicted robots’ navigation problems. For instance, requesting
permission to interrupt a conversation if an alternative path
cannot be determined requires deliberative skills. This article
presents the Social Navigation framework for Autonomous
robots in Populated Environments (SNAPE), where different
software agents are integrated within a robotics cognitive
architecture. SNAPE addresses action planning aimed at social-
awareness navigation in realistic situations: it plans socially
accepted paths and conversations to negotiate its trajectory to
reach targets. In this article, the framework is evaluated in
different use-cases where the robot, during its navigation, has
to interact with different people in order to reach its goal. The
results show that participants report that the robot’s behavior
was realistic and human-like.

I. INTRODUCTION

The navigation of autonomous robots in indoor environ-
ments has been one of the main challenges of robotics in
recent decades. Navigation involves robot skills such as path
planning and efficiently moving through the environment.
One of the goals of socially aware robotics regarding navi-
gation is to replicate human behavior as closely as possible.

Socially aware robots, especially those able to navigate,
must be capable of detecting people, their locations and their
interactions. This information provides the basis for social
aware navigation, which uses concepts such as proxemics
theory or object space affordances to identify the personal
spaces of interaction that the robot should avoid while
navigating. However, there are situations that prevent robots
from reaching their destinations without requiring external
cooperation. For instance, the situations described in Fig. 1.
In Fig.1a, two people are in a conversation and the robot
plans a route that requires to pass through the space that
these two people share. In Fig. 1b, a person in a corridor
interrupts the path of the robot. What a social-aware robot
should do in these situations is still an open question. Once
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Fig. 1: a) (left) two people interacting interrupt the path
planned by the robot; (right) after HRI, the robot can
continue its navigation; b) (left) path is blocked due to a
human next to the door; (right) after HRI the robot’s path is
unblocked

robots perceive and interpret the social contexts considering
social conventions, they must plan a sequence of actions
(e.g., approach the person, call their attention, or start a social
dialogue to ask for cooperation).

To the authors’ knowledge, this study is the first work
that addresses all the planning of actions aimed at the
social-awareness navigation of robots in realistic situations
including cooperation. This is the main contribution of
the article: a Social Navigation framework for Autonomous
Robots in Populated Environments (SNAPE), which manages
the actions to be carried out, the dialogue flow, planning of
the robot’s path, and the perception environment for social
awareness navigation. The proposed framework answers the
hypothesis that robots need social behaviors and coopera-
tion from humans to navigate socially. This cooperation is
achieved using different layers and levels of planning in
SNAPE. The robotic architecture used is CORTEX [1], the
evolution of AGM [2] where multiple software agents are
coordinated through a shared graph-like world model. The
planning domain is defined using AGGL, a planning domain
definition language created for AGM. The specific dialogues
are established through the RASA chatbot API [3].



II. RELATED WORK

To design socially-aware robot navigation that meets user
needs, it is critical to take into account social considerations
that influence the robot motion in the environment. In a
realistic scenario, these social considerations attend to the
way the robot navigates, but also respect a comfortable
human interaction space [4]-[8]. These works are based on
social mapping, a concept that goes beyond metric and se-
mantic mapping. Other theories use learning-based methods
in which the robot learns its social behaviors by observing
how humans navigate [9], [10].

It is also necessary to take into account the possibility of
planning social behaviors, such as approaching people to talk
to them or requesting permission to interrupt conversations.
The previous works present the same fundamental limitation
when the robot navigates in environments with humans: the
planned path has the potential to be interrupted by people
or their interactions. Planning HRI for social navigation is a
topic of growing interest, although there are currently few
works on the subject. In [11], two scenarios are used to
introduce the concept: a person blocking a path and two
interacting people blocking the path. A navigation planner
that takes into account HRI for some of the sub-problems of
social path planning is proposed in [12]. In [8] the authors
propose a framework for social navigation using modules for
planning or conversation. However, the dialogues in these
and other similar works in the literature are basic or non-
existent, and disregard social acceptance.

HRI for dialogue is used in different scenarios, such as
modeling and planning [13]. HRI for navigation is done
almost exclusively to send orders of movement to the robot.
In [14], the authors defined the corpus focusing on this
premise, moving a robot away from the human. A human
operator sends basic commands to the robot in a similar
work [15]. In works like [16], there is also a dialogue,
however it is not part of any navigation architecture. The
dialogue to cooperate within a socially-aware navigation
framework, initiated by the own robot, is novel. The authors
in [17] presented the original idea, which is limited to
simple interactions to enable robots to continue their motion.
The proposed framework extends this idea by enriching
conversations and defining the corpus of collaborative dia-
logues whose final goal is to improve cooperation for social-
awareness navigation.

III. SOCIAL NAVIGATION FRAMEWORK FOR
AUTONOMOUS ROBOTS IN POPULATED ENVIRONMENTS

An overview of the proposed framework is described in
Fig. 2. The SNAPE framework is built on five levels: 1)
perception layer; 2) social layer; 3) navigation layer; 4) HRI
interaction layer, and 5) planning layer. All these layers are
associated with independent software agents of the CORTEX
architecture [1], which shares information of the world
according to the Deep State Representation (DSR). The use
of the cognitive architecture CORTEX and the DSR allows
the improvement and extension of functionalities of each
agent keeping the framework structure, i.e., it is not limited

Fig. 2: Overview of the proposed SNAPE framework

to the use of an algorithm or other, but, once defined the
functionality of each layer, it can be substituted by specific
algorithms and agents. The SNAPE framework covers all the
spectrum: from the perception of the environment to behavior
planning. SNAPE includes planning at different levels: at the
level of dialogue, task-planning and behavior.

A. Perception layer

The lowest level in the architecture represents the robot’s
need to acquire enough information from the environment
to make socially acceptable decisions. Social navigation
depends on factors related to the robot’s surroundings: the
position of people and objects, dimensions of the environ-
ment, or the hour of the day. Robots that intends to be
socially accepted have to adjust their navigation to these
elements and be capable of detecting them.

The perception of the environment is made through the
robot’s sensor readings, which can be integrated into a smart
ecosystem equipped with sensor networks. The perception
layer constitutes the physical world inside the cyber-physical
ecosystem [18], and it is composed of cameras and micro-
phones.

The perception layer uses the models described in [7],
[18]. On the one hand, in the case of a person i in the



environment, hi = (x, y, θ)i, is described by its position
(x, y) and orientation θ, which are tracked by a specific
agent. On the other hand, an object j, oj , is described by its
pose poj = (x, y, θ)j . The detection of objects and people
in the environment is out of the scope of the paper and are
assumed to be detected by the agents in CORTEX. Finally,
Hn = {h1, h2...hn} and Om = {o1, o2...om} are the sets of n
and m humans and objects detected by the perception layer.
This information is updated in the DSR to ensure that all
agents in the architecture share the same knowledge from
the robot’s surroundings.

B. Social layer

The second layer of the architecture represents the robot’s
need to be socially aware. Social awareness depends mainly
on socially accepted factors. A social robot, for instance,
should respect social distances, should not interrupt a con-
versation or request permission if possible. In the SNAPE
framework, several software agents take part in the definition
of the social mapping [18].

• Social mapping: populated environments. Given Hn,
the set of people detected in the perception layer, the
interaction spaces of each individual hi are modeled as
the asymmetric 2-D Gaussian curves gi(x, y) [7]:

ghi(x, y) = e−(k1(x−xi)
2+k2(x−xi)(y−yi)+k3(y−yi)

2) (1)

being k1, k2 and k3 a set of coefficients which are
dependent on the orientation θi. This Gaussian function
emphasizes the region in front of the person, as defined
by the theory of proxemics. Once people have been
detected, the algorithm clusters interacting people in the
environment according to their distances by performing
a Gaussian Mixture, as described in [7]. The personal
space function gi(h) of each individual hi in the envi-
ronment is totalled and a global interaction space G(h)
is built.

• Social mapping: Space Affordances and Activity Spaces.
Given Om, each object ok ∈ OM also stores the
interaction space iok as an attribute, which is associated
to the space required to interact with this object. These
spaces have been modeled depending of the shape of
the object and the way that people interact with: i)
TV or poster similar shapes; ii) rectangle shapes (e.g.,
beds or tables); and iii) circular shape objects (e.g.,
tables). Interaction spaces are added only if the person
is interacting with the object.

These interaction spaces are updated in the DSR through
specific links and nodes. Fig.3a shows a 3D view of a
simulated scenario with four people and three objects, H4 =
{h1, h2, h3, h4}, Om = {o1, o2, o3}. Fig.3b shows the result
of applying the social layer in Fig.3a (i.e., social mapping),
where the social interaction spaces have been represented in
different colors.

(a) (b)

Fig. 3: a) People and objects in a simulated environment; b)
social mapping built from the social layer of the framework.

C. Navigation layer

The robot’s environment is represented by a uniform graph
composed of obstacle-free nodes with a fixed finite traversal
cost, and non-free nodes, which have an infinite one. The
SNAPE framework modifies the costs according to the social
map [7]. This final graph is used to estimate the optimal
social path using the classical Dijkstra’s algorithm.

• Graph-based grid mapping: Space is represented by
a graph G(N,E) of n nodes, regularly distributed in
the environment. Each node ni has two parameters:
availability, an, and cost, cn. The availability of a node
is a Boolean variable whose value is 1 if the space is
free, 0 otherwise. The cost, ci, indicates the traversal
cost of a node, i.e., what it takes for the robot to visit
that node (high values of ci indicates that the robot
should avoid this path). Initially, all nodes have the same
cost of 1.

• Social graph-based grid mapping: The node param-
eters an and cn of the free space graph are modified
according to the areas defined in the social map: firstly,
to include those associated with the interaction between
one person and another (or groups of people), and
secondly, to include those associated with the affordance
spaces of objects.

• Socially-acceptable path-planning: Dijkstra is used to
determine the shortest path between an initial position
and a target to which the robot must travel. Given a
source node, the algorithm calculates the cost to the
target node, taking into account the cost of the nodes.
The cost of a path is the sum of the cost of the nodes
it is composed of.

D. Human-Robot interaction layer

The fourth level of the SNAPE framework represents the
need for the socially-aware robot to begin specific interac-
tions that arise during navigation. In this article, the dialogue
has been developed for three particular situations. The first
represents the dialogue when a single person blocks the path
and must move for the robot to pass through. In the second
dialogue, the robot asks permission to interrupt a conver-
sation between two or more people. A third intermediate
dialogue is generated to get the person’s interest, in case the



robot wants to initiate an interaction with the person and they
are not face-to-face.

This layer includes the following subsystems: i) Natural
Language Understander (NLU, i.e., translates natural lan-
guage human utterances from the individual side to a formal
semantic representation); ii) Natural Language Generator
(NLG, i.e., translates statements in formal semantic repre-
sentation from the robot side to natural language utterances);
and (iii) Dialogue State Tracker (DST, i.e., is responsible for
maintaining the state and flow of the dialogue, choosing the
best conversation from the dialogue corpus.

This corpus is created from the ”Wizard-of-Oz” methodol-
ogy. Under this approach, the participant believes that they
are blocking the robot’s path, and thus, the robot asks for
cooperation and starts the dialogue. However, a human is
performing the NLU function, translating the participant’s
utterances from natural language to semantics. This same
human is in charge of the NLG system, directly typing
the responses. All utterances are recorded and analyzed,
annotating intents, actions, and conversations.

The flow of the dialogue is established through the RASA
framework, a conversation system based on Intents, Entities,
Stories and Actions. The RASA NLU analyses and places
each phrase in one Intent depending on the keywords previ-
ously defined in the study. For instance, if a person in the
robots surrounding says ”Good morning” the NLU returns
the ”greeting” Intent, or if the person says ”Yes, I surely
will” the NLU returns the ”affirmative” Intent. According
to the Intent recognized, the Rasa core, which is trained
on the Stories created using the ’Wizard-of-Oz’ approach,
predicts the next action of the robot. For instance, when the
”negative” Intent is active, RASA Core predicts the action
”utter frustrated” and then the robot is ready to listen on
that topic after its execution. The current situation in the
real world is stored in the Entities, which are used to direct
the flow of the dialogue accordingly. Within the established
corpus in the SNAPE framework, there are five classes of
conversation Intents defined: greeting, affirmative, negative,
repeat, and conversation.

E. Planning layer

The fifth and last layer of the architecture represents the
need for the robot to plan specific actions to carry out the
navigation to the target. Planning HRI for navigation tasks
entails defining the elements of the planning problem: an
initial world model, a mission, and a set of actions (i.e.,
the planning domain). In the SNAPE framework, planning is
performed with the symbolic information in the DSR, using
the nodes of the representation as symbols and the edges
of the graph as predicates [11]. Fig. 4 illustrates the shared
representation associated to Fig. 3a. As shown in Fig. 4,
CORTEX uses different types of symbols and edges, however
only symbols are used in the planning domain: human, robot,
objects and room. Similarly, the set of edges are limited in
the planning domain.

This paper is focused on those cases where only a robot
is located in the model, but where several people, objects,

Fig. 4: Deep State Representation of the world shown in Fig.
3a.

and rooms are possible. The planning domain in the SNAPE
framework defines all the rules needed to be socially ac-
cepted, among others: to navigate without disturbing people,
approach a person or group of people, get their attention, and
initiate interaction. The planning rules are described through
AGGL [2], and thus, they are defined as pattern pairs, in
the same way as string grammar rules: each rule states that
the pattern on the left-hand side can be replaced with the
pattern on the right-hand side. Fig. 5 shows the set of rules
described in the SNAPE framework1. In the figure, the blue
color indicates the nodes and edges on the left-hand side, in
yellow, the elements that will be on the right-hand side, and
in green and white, the nodes and edges, respectively, that
do not change in the rule. For example, the changeRoom
action in Fig. 5 shows to the robot in a room in the left-
hand side (initial state) and, on the right-hand side, after
applying the rule, the robot should be in another room. Both
rooms are accessible and the robot is not blocked. The set of
rules determines the robot’s pose when it approaches people
to engage the dialogue, and besides, it defines the case in
which the person does not retreat after the conversation.

F. Case study

To better communicate how the proposed framework can
guide the design of socially aware navigation behavior in
robots, two examples are presented: an only person blocks
the path, and two people interacting with each other block
the robot’s path. In both situations, the robot navigates in a
populated environment (goToRoom action). The perception
layer detects people and objects. Then, the social map
modifies the values of the graph G(N,E), and the robot
plans its social path. If this path is blocked during navigation,
new missions are generated: approaching a person (e.g.,
goToPerson action), drawing its attention with a specific
dialogue (e.g., takeTheAttention action), asking permission
to pass (e.g., askForPermission action). The management of

1These rules, as well as the rest of the planning domain, are available in
https://github.com/robocomp/robocomp.



Fig. 5: Set of planning rules defined in the SNAPE frame-
work. See the text for more details.

the dialogue and actions is the responsibility of the HRI and
planning layer, respectively.

IV. EXPERIMENTAL RESULTS

A set of simulated scenarios were used to validate the
results of the SNAPE framework and the proposed corpus.
The algorithms have been developed in C++ and the tests
have been performed in a PC with an Intel Core i5 processor
with 4Gb RAM and Ubuntu 18.10. The framework runs in
real-time. A total of 20 participants evaluated the SNAPE
framework and the dialogues by interacting with the robot
in simulated scenarios.

This simulated scenario is a 65m2 apartment with two
rooms, a corridor, and one bathroom, in which different
RGBD cameras are installed. The social robot is an om-
nidirectional base equipped with an RGBD camera. At the
beginning of each experiment, people were randomly placed
in the environment. Some of them blocked the robot’s path
in the corridor, while others talked in a vis-a-vis formation
blocking the path. During the robot’s navigation, participants
acquired the role of the human that blocked the path. All
people moved through a Graphical User Interface controlled
by the participants. Robot and participant interacted, where
the dialogue corpus was used for generating natural language
utterances. To avoid a biased evaluation that can occur when
different TTS/ASR algorithms are used, the dialogue was
carried out directly by sending text messages on the GUI.
Each participant decided the behavior of the human in the
simulated scenario (e.g., choosing whether to let the robot
cross or not). To validate the SNAPE framework and assess
the satisfaction of the humans regarding the robot’s behavior
participants completed a Likert scale-based questionnaire.
The results of the questionnaire, including some of the
questions, are shown in Table I.

Question avg. (σ)

The robot navigates in a similar way to the human 4.61 (0.44)
The robot correctly approaches the person to start a conversation 4.27 (0.40)
The robot correctly proves its intention of wanting to start the conversation 4.67 (0.38)
The robot asks for cooperation to continue its navigation kindly 4.1 (0.65)
The robot responds appropriately during the conversation 4.25 (0.32)
The structure of the dialogues is appropriate to ask cooperation 4.05 (0.54)
The robot understands the social context and the interaction 4.44 (0.42)
The robot shows socially accepted behavior 4.65 (0.32)

TABLE I: 20 participants used a Liker scale-based question-
naire to evaluate the dialogue corpus and the framework.

Fig. 6 shows the evolution of the DSR during robot’s
navigation in one of the many tests. Fig. 6a illustrates four
time instant labeled from 1 to 4. Fig.6b shows the state of the
DSR in those same instants of time. The current state of the
DSR allows the planning layer to generate the appropriate
actions, which are also presented in Fig.6b2

As shown in Table I, most of the participants agree that
the robot’s behavior for the study case is socially appropriate
and friendly. Besides, most of them also agree that the robot
understands the social contexts and interactions in all the sce-
narios. One of the main ideas after studying this Liker scale-
based questionnaire is that the dialogue corpus presented in
this paper achieves its function in the architecture correctly.
In general, all participants agree that the dialogues improves
the cooperation for navigating. Another main conclusion is
that the SNAPE framework allows a more realistic socially-
awareness navigation.

V. CONCLUSIONS

Human-aware robot navigation in populated environments
is a complex problem that is currently unresolved. The
situations that prevent a robot from reaching its end pose are
extensive, and in some of them, robots must ask for some
cooperation from the people around them. In this work, the
framework SNAPE is described, including but not exclusive
to a human-aware navigation architecture that integrates
robot’s skills such as the perception of its surrounding, the
definition of the social map of the scene, the human-aware
path planning and navigating, the planning of dialogues to
solve situations where the robot cannot continue navigating,
and the planning of high-level social actions.

The SNAPE framework provides the basis of social-
awareness navigation. Conceptually, it is divided into lay-
ers with specific functionalities which are easily adaptable
to other platforms. The framework has been evaluated in
simulated environments, and the results demonstrate that the
robot navigates and interacts following social conventions.
Finally, a dialogue corpus has been created for the real
scenarios covered in this paper. All software is open-source
and available, including these dialogues.
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